
I ?.

Structure Constraints in a Constraint-Based Planner

Wanlin Pang* and Keith Golden

NASA Ames Research Center
Moffett Field, CA 94035

{ wpang I kgoIden)@emaiI.arc.nmpv

Abstran In this paper we report our work on a new constraint domain, where
variables can take structured values. Earth-science data processing (ESDP) is a
planning domain that requires tbe ability to represent and reason about complex
constraints over structured data, such as satellite images. This paper reports on a
constraint-based planner for ESDP and similar domains. We discuss OUT approach
for translating a planning problem into a constraint satisfaction problem (CSP)
and for representing and reas~ning about structured objects and constraints over
structures.

Earth-science data processing (ESDP) at NASA is the problem of transforming low-
level obsexvatiom of the J k t b system, such as data from Eadmbserving satellites
and ground weather stations., into high-level observations or predictions, such as crop
failure or high fire risk. Given the large number of socially and economically important
variables that can be derived from the dara, the complexity of the data processing needed
to derive them and the many terabytes of data that must be processed each day, there are
greaf challenges and opportunities in processing the data in a timely manner, and a need
for more efi-ve automahon. Our approach to provldmg th~s automabon is to cast It
as a planing problem: we represent data-processing operations as planner actions and
desired data products as planner goals, and use a planner to generate data-flow pro-gams
that produce the requested daa

Many of the recent advances in planning, such as state-based heuristic search or
reduction to dsfiability problems, are not readily adapted to ESDP problems, due to
the following features:

- universal quantification: Many commands and programs operate on sets of things,
where membeship in the set can be defined in terms of necessary and sufficient
conditions. For example, the Unix Is command lists all files in a given directory.

- incomplete information: It is common for a planner to have only incomplete in-
formation at the time of planning. For example, a planner is unlikely to know about
all the files on the local file system, until 1s command is executed.

- large, dynamic universe: The size of the universe is generally very large or infinite.
For example, there are hundreds of thousands of files accessible on a typical file

* QSS Group Inc.

system and billions of web pages over the Internet. The number of possible files,
file pathnames, etc, is effectively infinite. Furthermore, new files can be created by
executing actions, so the universe is dynamic.

- complex data types: Files and other objects in the domain are complex data struc-
tures, specified in terms of their attributes, which can, in turn, be complex data
types. For example, a satellite image is specified by resolution, date, region, etc,
the region can be specified by a pair of points defining its bounding box, and a
point is a pair of coordinates designating the longitude and latitude.

- complex constraints: Data processing domain typically involves a rich set of con-
straints. For example, specifications of data inputs and outputs include constraints
indicating geographic regions of interest, thresholds on resolution, data quality, file
size, etc. Specifications of data-processing operations include constraints relating
the inputs of the operations to the outputs, which are complex objects such as satel-
lite images and weather forecast data. In the course of planning, additional con-
straints arise specifying how parameters of an action depend on the parameters of
other actions in the plan.

We take the approach, like many other researchers [21,16,7,20], of translating the plan-
ning problem into a constraint satisfaction problem (CSP). However, since data pro-
cessing domains are substantially different from other planning domains that have been
explored, our approach to translating planning problems to CSPs differs as well. For ex-
ample, [7] use variables to represent goals and domains to represent available planner
actions achieving the goals. Constraints are used to encode mutual exclusion relations.
While this is an effective approach for propositional planning problems, we also need
variables to represent objects and action parameters, and constraints to represent rela-
tions among them. Thus, our encoding is somewhat more complex.

For example, actions can have inputs and outputs, which are represented as vari-
ables, typically of some complex (structured) type. Attributes of these inputs and out-
puts may also be referenced by variables, and constraints over any of these variables
may be specified as part of the action description. For example, an action that produces
a scaled-down copy of an image might have a constraint specifying that the resolution
of the output image equals the resolution of the input times a scale factor (which is a
parameter of the action). Other attributes of the input image, such as the subject matter,
will be unchanged in the output.

In this paper, we report our recent work on representing and reasoning about struc-
tured objects, which we refer to as structures. Section 2 discusses data processing as
a planning domain and our planning approach, focusing on how we handle structures.
Section 3 discusses how we represent constraints over structures, and Section 4 de-
scribes our approach for solving constraint problems that include structures.

2 Planning in the data processing domain

2.1

The Terrestrial Observation and Prediction System (TOPS, http://www.forestry.umt.-
edu/ntsglProjects/TOPS/) [181 is an ecological forecasting system that assimilates data

TOPS - a data processing domain

Fig. 1. Structured inputs and outputs to a model in the TOPS domain. Solid arrows represent data
flow. Broken arrows represent sub-structure relations.

from Earth-orbiting satellites and ground weather stations to model and forecast con-
ditions on the surface, such as soil moisture, vegetation growth and plant stress. The
goal of this system is to monitor and predict changes in key environmental variables.
The inputs needed by a Tops model run include satellite data, such as Fractional Pho-
tosynthetically Active Radiation WAR), or Leaf Area Index (LAI) and weather data,
such as precipitation. The input data may be obtained directiy from data archives some-
where, but most of times, the data obtained from data sources need to be processed
before the model run. A common sequence of data processing is: 1) gather data from
multiple sources; 2) convert the data into a common representation, combine data, and
perform other transformations; 3) feed the data into a model, for example, a simulation
of _mss primary production (GPP) of terrestrial vegefation; 4) convert the output of the
model into some form suitable for visualization. Routine data processing can consume
roughly 80% of manpower, with only 20% devoted to data analysis . As a result, the
vast majority of data are never used, in part due to the effort required to prepare data
[17]. We have developed a planner-based agent, called IMAGEht, to automate these
data-processing activities.

The data consumed and produced in the TOPS domain are ail complex data struc-
tures, such as spatial data. Figure 1 shows a simplified view of the data input and output
to a TOPS ecological model.

2 2 Planningapproach

The architecture of IMAGEbot is described in Figure 2. Planning domains are speci-
fied in an expressive language called the Data Processing Action Description Language
(DPADL) 191. From the planning problems specified in DPADL, the planner incremen-

tally constructs a l@ed planning graph, from which it extracts distance estimates for
heuristic search and also derives a CSP representation of the planning problem. Whereas
a conventional planning graph [3] is a grounded representation, consisting of ground ac-
tions and propositions, a lifed planning graph contains variables. This is a much more
concise representation than an ordinary planning graph, but it is potentially less infor-
mative. We use a constraint propagation algorithm to restrict the domains of variables in
the graph, making it more informative. The focus of this paper is on the CSP represen-
tation. The planning search and constraint propagation are conducted iteratively, until
a plan is found or the planner proves that no valid plan exists in the planning graph, in
which case, it either extends the planning graph, or admits failure.

Fig. 2. The IMAGEbot architecture

Actions and conditions An action is a tuple (I, O,T,FI,E,x), where I,O,T are the
input variables, output variables and parameters, respectively. All these variables are
typed. FI is the precondition, E is a list of effects and x is a procedure for executing the
action that may reference any variable in I U P and must set every variable in 0.

A full discussion of preconditions and effects in DPADL can be found in [9]; for
the purposes of this paper, it suffices to observe that many goals and preconditions
consist of requirements on the attributes of variables in I and many effect conditions
consist of assignments to the attributes of variables in 0 and creation of new objects
(which themselves are specified in terms of assignments on attributes). These condi-
tions can be expressed in the concise canonical form v = (a] ,a2,. . . ,an), where v is
a variable and (a, ,a2,. . . ,a,) is a structure specification, where each attribute ai may
be a variable, constant, structure specification, or 0 (unspecified). For example, sup-
pose the attributes of a file are name, format, and size. A file can be represented as a
tuple(name, format, size). To specify the goal of finding a file f named “foo.txt” whose
size is greater than 100, we could write f = (“foo.txt”,0,s) A s > 100.

Like goals, effects can also have @-attributes, but the meaning is different. In goals,
0 means don’t care. In effects, it means default. Any variable o E 0 or new object may
be specified as a copy of some variable d E I , in which case attributes of o default to
the same value as attributes of d. If nothing else were specified, then o would be a per-
fect copy of d. However, what we are interested in is typically not perfect copies, but

Algorithm 1 Structure Unification. E and G are structure specifications from an effect
and goal, respectively. % is the initial variable bindings and K is a variable designating
the object providing “default” values for E.
undy(E=< el, . . .,et > , F =< gl , . . . ,gk >,B,K)

1.
2.

3.

imperfect ones. For example, there are many actions that change just one or two prop
erties of an object, such as file format, projection, resolution, size, or name. Specifying
the outputs of those actions as copies ot thelr mputs allows us to iist oniy the amiiiutes
that are changed [12]. In our canonical form, an effect that changed only one attribute
of o would be of the form o = (@,PI,. . . ,n, . . .a, a), where n is the new value for the
attribute that changed. All other amibutes take on the corresponding value from d.

Structure unification Given a goal and effect in canonical form, determining whether
(and under what conditions) the effect satisfies the goal is a simple matter of unification.
Pure constraints, such as s > 100 in the example above, can never appear in effects, so
they are just added to the CSP. Subgoals of the form v = (ul ,q,. . . ,un) are matched
against effects of the same form, using Algorithm 1. For the most part, this unification is
just term-by-term matching, but 0 entries in effects, when matched with non-0 entries
in goals, result in delegation to whatever input variable to output is a copy of. This
delegation results in an equality constraint between the the input variable and a new
structure specification, which is treated as a new subgoal Figure 3).

Lifted planning graphs The planner incrementally constructs a directed graph, similar
to a planning graph [3], but using a lifted representation (ie., containing variables). This

graph is used to obtain distance estimates for heuristic search, and is also the basis for
the construction of the CSP. Arcs in the graph are analogous two causal links [19].
A causal link is triple (a,,p,a,), recording the decision to use action a, to support
precondition p of action a,. However, instead of an arc to record a commitment of
support, we use it to indicate the possibility that a, supports p. The lifted graph contains
multiple ways of supporting p ; the choice of the actual supporter becomes a constraint
satisfaction problem. We add an extra term to the arc for bookkeeping purposes - the
condition *needed in order for a, to achieve p. A link then becomes (a,, e, p , a,).

Given an unsupported precondition p of action a,, our first task is to identify all the
actions that could support p. Because the universe is large and dynamic, identifying all
possible ground actions that could support p would be impractical, so instead we use a
lifted representation, identifying all action schemas that could provide support. Given
an action schema a, we determine whether it supports p by regressing p through a,
(Figure 3). The result of regression is a formula e. If =I, then a, does not support
p. The procedure for goal regression is straightforward, relying mainly on a unification-
based entailment test, as described in Algorithm 1. Initial graph construction terminates
when all preconditions have support or (more likely) a potential loop is detected.

Fig. 3. Goal regression on stntctures. Both outputs (1) and inputs (2) of actions can be described
as partial structure specifications (shown as double-bordered boxes). When matching an input
(inl) to an output (outl) during planning, these structures are unified (c), resulting in equality
constraints among attributes (labels on arc). Since the output outl is defined as a copy of in2,
goal conditions on attributes of in1 that are undefined for outl are delegated to in2, resulting in a
new subgoal.

From planning to constraints After the planning graph is conshuckxi, a constmint
satisfaction problem (CSP) representing the search space is incrementally built The
CSP contains: 1) boolean variables for all arcs, nodes and conditions; 2) variables for
all parameters, input and output variables and function values; 3) for every condition in
the graph, a constraint specifying when that condition holds (for conditions suppoaed
by Links, this is just the XOR of the arc variables) ; 4) for conjunctive and disjunctive
expressions, the constraint is the respective conjunction or disjunction of the boolean
variables corresponding to appropriate sub-expressions; 5) for every arc in the graph,
constraints specifying the conditions under which the supported fluents will be achieved
(i.e., -$ + p); 6) user-specified constraints; and 7) constraints representing structured
objects.

3 Constraints over structures

We start by reviewing some standard CSP notation and then describe how we represent
and reason about structures.

3.1 Constraint satishction problems

A Constraint Satisfaction Problem (CSP) consists of variables, domains, and constraints.
Formally, it can ix defined as a triple di, D,C, where X = { X I ,x2,. . . ,xn} is a finite
set of variables, D = {d(xl) ,d(xz) , . . . ,d(xn)} is a set of domains containing values the
variables may take, and C = {Ci , C2,. . . , Cm) is a set of constraints. Each constraint C;
is defined as a relation R on a subset of variables V = {xi,x,, . ~. ,xn}, called the con-
straint scope. R may be represented extensionally as a subset of the Cartesian product
d(x,) x d(xj) x ~. . x d(xk), or implicitly using a constraint procedure [13]. A constraint
Ci = (vi, Ri) limits the values the variables in V can take simultaneously to those assign-
ments that satisfv R. A solution to the problem is an assignment of values to variables in
X satisfymg constraints in C. The central reasoning task (or the task of solving a CSP)
is to find one or more solutions.

In addition, the CSP converted from the planning problem, as discussed in Section
2.2 has the following features:

- Dynamics: variables and constraints may be dynamically added or removed from
the problem, and values may be dynamically added or removed from domains.

- Infinity: variables may have unknown or infinite domains, making it impossible to
represent constraints extensionally as relation tables.

- Typed variables: variables may take different types of values, such as numbers,
booleans, strings and structured objects. - Incompleteness: a solution to a problem doesn’t require a complete assignment to
all the variables in the prob€em, in part due to dynamics.

It has been reported in [8,10,11] how dynamics, infinity, string variables and constraints
are handled. In this paper, we focus on how to represent and reason about structured
objects, or structures for short. We call variables that take structures as values structure
variables.

3.2 Structures

Data objects often contain complex data structures'. Being able to efficiently represent
and reason about these structures, as well as actions that create, copy or modify them,
is essential. As discussed in Section 2.2, a structure can be specified in the concise
canonical form (a1 ,a2,. . . ,an), where ai is attribute, which could be another structure
specification. In the CSP, it also seems natural to represent a structured object as a
tuple. For example, suppose a map has 3 attributes, resolution, region, and date. The
tuple < 8,USA,2003154 > represents a map of the US taken on the day 154 of year
2003 with resolution of 8 kilometers (one pixel corresponds to a 8km square). If a single
object can be represented as a tuple, a set of objects of a given type can be represented
as a relation table, where each row of the table is an object. If the structure attributes are
represented as constraint variables (they are variables in the DPADL representation), a
structure can be represented as a constraint, which is a relation by definition. Thus, it
would seem unnecessary to have variables that take structures as values.

Unfortunately, this representation is limited to the situation where all the structure
instances of a given type are known, there are only a finite number of them, and there
are no constraints on structures but only on structure attributes. If the structure instances
are unknown or there are infinitely many of them, which is more likely in real-world
applications, there will be no finite representation of the constraints; if there are con-
straints on structures, we will end up with a CSP having 2nd-order constraints; that is,
constraints over constraints.

We take the approach of representing structures as constraints, but in a different
form. We allow the values of variables to be structures. As mentioned before, these
variables are called structure variables. Like other variables, structure variables can ap-
pear in any form of constraints, and can be treated just as regular variables. Attributes
of structures are also variables (which will be addressed as attribute variables if neces-
sary). However, a structure variable also appears in a special form of constraint, called
structure constraint. For each structure variable, we create a structure constraint on
this structure variable and its attribute variables. For example, if we have a structure
variable, x , that takes maps as values, we will have a structure constraint on a, x.res,
x.region, x.tinze>, where x.res, x.region, and x.time are attribute variables of x .

Although a structure constraint on a structure variable represents a set of structured
objects, the representation is often implicit; it relates a structure variable to the structure
attributes, capturing certain conditions relevant to structures in the DPADL coding of
the planning problem. Adding structure Variables into the CSP coding is not redundant
but necessary to represent constraints over the structures. Now the question becomes
how to specify structure constraints.

A structure constraint, like other constraints in our constraint library, is implemented
as a procedure, or actually a collection of procedures over subsets of the structure and
attribute variables. The applicability of these procedures depends on the domains of
the structure and attributes variables, especially on whether they are finite or infinite.

There are recursive structured objects such as filesystem directories and non-structured or
semi-structured data objects such as the content of an image or text file, which are discussed
in [111. Here we limit the discussion to non-recursive structures.

1.

2.
3.

4.
5.

if d(x) is finite
(a) for each v E d(x)

i. if M, is not empty, execute all procedures in MI on v;
ii. else execute default methods on v to get attribute values;

(b) restrict d(al) , .._, d (q) with the new set of dues;
(c) ifany d(ai) becomes empty, retornfailure;
if MA is not empty, execute all procedures in MAon a1 ,..., ak;

(a) for each tuple < u1, ..., Uk >E d (q) x ... x d (q)

(b) restrict d (x) by the new set of values;
(c) if d (x) becomes empty, xeturnfailure;
add variables whose domains are changed A;
retnrn success:

dS72 i f d (U l) , ._., d(Qk) are finite

i execute the default method on < u1, ..., Uk > to get a x value;

For example, given the variable representing the structure < 8, USA,0 >, Le., all 8-km
maps of the US, we can trivially determine the domains for the resolution and region
amibutes, but we have no way of determining the domain of the date attribute. But
given a variable representing < 0, USA, 2003 154 >, we can determine (via a procedure
call that translates into a database query) , what maps of the US are available for that
date. The API call returns a set of the actual data structures (in the case of TOPS, Java
objects) representing each map. This set comprises a finite domain representation for the
structure variable. We can then determine the resolution for each map by executing the
appropriate procedure on the correspondmg data structure, making that domain h i r e as
well. A more formal description of structure constraint execution is given in Algorithm
3.

A constraint gets executed by the propagator when any variables in the constraint
scope are added to the agenda, which usually means their domains are changed. Exe-
cuting a structure constraint not only enforces the compatibility between the structure
and its attributes; it also initializes I~E domains of variables, which may have unknown
domains at the beginning, and eliminates inconsistent values from the domains.

3.3 Comparison to the hidden variable representation

The hidden variable representation is a binary representation of non-binary constraint
problems [6,1]. A k-ary constraint represented as a relation can be translated into a set
of k binary constraints by adding a hidden variable, with a domain containing the tuples
in the original constraint A hidden variable represents the original constraint, and each
binary constraint (also called a hidden constraint) between the hidden variable and each
regular variable is one-way functional constraint, in which each value (a tuple in the

relation) of the hidden variable is compatible with at most one value in the domain of
the regular variable.

If an application problem involving structures doesn’t have constraints over struc-
tures but does have constraints over structure attributes, the problem can be formalized
as a non-binary CSP where attributes are variables and structures are constraints. Such
a non-binary CSP can be transformed as a binary one via hidden variable transforma-
tion, where hidden variables are actually structures. For example, in a crossword puzzle
problem, which is to find words from a given set of words that fit into the “word slots”
on a n x m puzzle board with blanks, words may be viewed as structures and letters as
attributes. There are only constraints on letters (;.e., on word slot intersections). This
problem can be formalized as a non-binary CSP, where variables are the spaces on the
puzzle board (excluding blanks) and constraints are the word slots. which can be repre-
sented using relations (each tuple is a word of the same length in the given dictionary).
This CSP can be transformed into a binary CSP, where hidden variables are word slots.

If the problem has constraints over structures, representing structures as constraints
may lead to 2nd-order constraints, which should be avoided. The structure represen-
tation we propose here indeed results in a non-binary CSP, but it is not suitable for
hidden variable transformation, because structure constraints are usually not specified
by relation tables.

However, we can have a binary structure representation: instead of a non-binary
constraints on the structure variable and its attribute variable, we can have a set of binary
constraints, each is posed on the structure variable and one of its attribute variables.
This representation may be useful in some limited situation; for example, if a binary
CSP solver is preferred.

Our reason for using k-ary structure constraints instead of a binary representation
is that the latter is inadequate to represent the ESDP domain. In practice, the structures
we need to represent correspond to real data structures, in our case, Java objects in
the TOPS system, and the constraint procedures are function calls on those data struc-
tures made available by TOPS. While some of those function calls are a good fit for
the hidden variable representation, namely, “getter methods,” i.e., functions that take a
structure as an argument and return one of its attributes, other function calls take multi-
ple arguments and cannot be represented using binary constraints. By defining a general
structure constraint in the constraint library, we are able to integrate the constraint rea-
soning system with the runtime software environment so that the operations provided
by the environment can be called when the constraint is executed during constraint
propagation. The constraint system is able to query the environment, to dynamically
determine what objects exist and what attributes or properties those objects have.

3.4 Example - the model ingest problem

A core problem of Earth science data processing is “model ingest”, i.e., preparing
a number of data files representing Earth system variables (we will use the word s-
variable to avoid confusion with constraint variables) and feeding them into a model.
Typically, the model inputs are sparial data, such as satellite images, and other struc-
tured data types, as shown in Figure 1.

Most approaches to model ingest specialize on particular data sources, hard-coding
choices such as resolution and projection. This is not required by the models them-
selves, which typically compute their results on a pixel-by-pixel basis, where the indi-
vidual pixels can be regarded as point data What is required by the models is that the
inputs are consistent, with the same resolution, projection, etc., so that corresponding
pixels all refer to the same location and time. Committing to particular data sources
ensures that the inputs are mutually consistent, but at the cost of flexibility; changing,
say, from 8km data to lkm data requires a major recoding effort.

Since the reason for using a planner is to have a system that can use the best data
for a given purpose, subject to availability and resource constraints, such as storage
and bandwidth, we adopt the opposite approach, making no commitment to a particular
data source, resolution or projection, but relying on constraints to ensure that they are
compatible. In addition to selecting input files that are compatible, we also have the
option of making them compatible, for example by reprojection, which is represented
as a planner action.

We consider a simplified version of this problem, where we are given a set of 20
georeferenced spatial data files. and the goal is to find (or produce) 4 data files to feed
into the model. For simplicity, we assume that these files are specified by a flat list of 10
attributes such as resolutioll, prujectwn, etc, and all of them are primitive types. These
-r 1UG.Y UCjCU L U u 3 1 y LUG I U U V W U I ~ C.VULLlUVII~.
1 c1-- ---A A- -..i-L. *L- &?-11---:-- --->:*:

- We need one file each for the s-variables FP& LAI, PRECIF' and TEMF'.
- the 4 files have to be the same resolution, projection, and format.
- the 4 files have to cover the same geographic region.
- the dare, cloua5~ss, and quality of these 4 image files have to be in the specified

range. In particular, WAR and LAI don't change very rapidly, so any file within
a week of the target date is acceptable, but cbudiness has to be low. Conversely,
PRECIP and TEMF' must be for the exact date of interest, but clouds are irrelevant.

There are two actions available: reproject which changes the projection of the input file,
and scale which decreases the resolution.

This simplified problem is trivial for the IMAGEbot Planner, but for the purpose
of being able to ignore other variables and constraints generated by the planner, let's
assume that the planner constructs a grounded planning graph (that is, every action
node is grounded) as in Figure 4. Note that the dia-oram only shows actions for one
goal; others are the same due to symmetry of the 4 subgoals.

Fig. 4. A simplified planning graph

Ignoring the actions, the problem in hand is a typical constraint problem,. where 4
files need to be found from the given 20 input files, satisfying those conditions. Because
there are no constraints between files, only between attributes, we don’t even need struc-
ture variables and structure constraints. The minimal CSP would have 4 x 10 variables,
each for an attribute of the file, and the user-specified constraints listed above, such an
AllSame constraint on the resolution attribute variables. The input file objects can be
represented by 10-ary constraint containing 20 tuples.

With actions involved, we still need to find the 4 files, but the files can be taken
directly from the input file set or can be produced by the chosen actions. Therefore,
we have constraints specifying the relation of inputs and outputs of planner actions,
and specifying the casual relation of subgoals and conditions, all involving file objects.
For the graph in Figure 4, we have 16 actions; for each action, we have the following
variables and constraints:

- a structure variable for its input image, and 10 variables for the input’s attributes,
and a boolean variable b representing whether the action is in the plan.

- a structure constraint for the structure variable and its attributes, and 10 conditional
equality constraints, each with the conditional variable b and a pair of attributes,
one from the input image and the other from the output of the action supporting it.
For example, suppose the variable scale is true iff the goal file g4is produced by the
scale action and the input of action scale is scalelri. Then we have the constraint
scale => .5 *scaleln.res = g.+.res, meaning that if the scale action is chosen to
produce g4, then the resolution of g4 will be half the resolution of scaleln. We also
have the constraint scale => scaleln. format = g4. format, meaning that the format
of g4 will be the same as that of scaleln.

- other boolean variables for logical expressions that represent planner subgoals and
planner action conditions, which we will ignore them for now.

4 Solving the constraint problem

4.1 Reasoning about structures

Structure unification, as discussed in Section 2.2, and as illustrated above, creates a
fairly large number of equality constraints over structures and structure attributes, which
provides an opportunity for symbolically reasoning about structures.

When the planning graph is built, we create an additional symbolic constraint net-
work containing only equality constraints, mainly on structures (note that a regular
variable can be considered a structure of a primitive type). This network of equality
constraints is propagated before creating the regular CSP. The propagation aims mainly
at eliminating unnecessary variables and constraints. It also detects inconsistencies. The
propagation and unification algorithms are given in Algorithm 4 and 5.

4.2 Propagation and search

Constraint propagation is an essential part of solving the constraint problem generated
from a planning problem, not only because it eliminates inconsistent values, but also

&orittun 4 Propagation by unification
L.et
be tWOstructures

be a network of quality comtmhts, A a set of structures called agenda, and let L and R

P W P a t m 4 4

1. whileA is not empty, do
(a) C<- set of constraints containing structures in A;
(b) f o r e a c h L = R E C

i. remove L = R from C;
ii. ~~UIU~Y(L:R;A,N returns failure, rrturn failure;

2. retumsuccess;

Algorithm 5 Unification
Let
be two structures

unify(i.,l?,d,G

be a network of equality constraints, A a set of structures called agenda, and let L and R

1. i f L = R , remove L = R from N', return success;
2. i f L and R are not the same type. returnfailure;
3 . if L and R are constants and L # R return fatlure;
4. if R is a constant

(a) i f L is a free variable, substitute R for L in 5'(; remove L = R
(b) add all structures changed by substitution to A;

(a) i f R is a free variable, substitute L for R in w, remove L = R
(b) add all structures changed by substitution to A;

5. ifLisaconstant

6. for each pair of athibutes
7. rrturn success;

and Ra, add La = RJo 5'(;

because the constraint problem in hand contains universally quantified variables with
infinite domains, which cannot be enumerated by search. The propagation on regu-
lar variables (including structure variables, which are treated as regular variables) is
straightforward: whenever the domain of a variable is changed, the constraints contain-
ing this variable are executed. If executing the constraint results in any variable domain
changes, the constraints containing the changed variables will be executed. This pro-
cess continues until there are no further changes, or a constraint execution fails; that is,
the execution results in empty variable domains. Constraint execution failure implies
that the constraint network is not consistent. The propagation enforces generalized arc-
consistency [2,14].

We have implemented a heuristic planning search algorithm and a few constraint
search algorithms, such as backtracking, backjumping and conflict-directed backjump-
ing, all of which interleave search with propagation; that is, when the search algo-
rithm assigns a value to a variable, the changes are propagated. The high-level plan-
ning search, guided by heuristic distance estimates extracted from the planning graph
[3], selects planner subgoals to achieve, and planner actions to achieve the subgoals.
The constraint search finds values for variables representing planner action parameters.
This is necessary to make actions executable. During the search, propagation is per-
formed whenever a value is assigned to a variable. The search is an iterative process
involving possible backtracks; that is, if there are no valid parameters for a chosen ac-
tion, the planner has to search for another plan; if it is impossible to extract a plan from
the current planning graph, the planning graph has to be extended.

5 Conclusions

We have discussed a novel approach to constraint-based planning in domains that in-
volve structured objects. The planner is implemented and used in the IMAGEbot planner-
based agent, which has been applied to the TOPS ecological forecasting application. Al-
though our focus in this paper was the Earth-science data processing (ESDP) domain,
the planner is domain-independent, and the approach presented is broadly applicable.
Structured objects, in the form of complex data structures, are ubiquitous in software
domains, and may be useful in areas such as custom hardware configuration and manu-
facturing.

Contributions of the paper include the introduction of structure variables and struc-
ture constraints over those variables and a symbolic propagation algorithm that simpli-
fies the constraint network.

There has been relatively little work relating to structured objects in either planning
or constraint reasoning. One notable exception is the COLLAGE planner [15], which
dealt with structured object in the KHOROS image processing domain and was also
based on constraint reasoning. Another constraint-based planner for a similar domain
is the Multi-mission Vicar Planner (MVP) [SI. Both of these are action-decomposition
planners, which have less of a need to represent and reason about data transformations
in the way that Ih4AGEbot does, and neither supports the kind a structure constraints
discussed in this paper. [4] addresses workflow planning for computation grids, a sim-

ilar problem to OUTS, though their focus is on mapping pre-specified workflows onto a
specific grid environment, whereas our focus is on generating the worlctlows.

References

1. F. Bacchus, X Chen, P. van Beek, and T. Walsh. Binary vs. non-binary constraints. Artjficial
Inrelligence, 14O:l-31,2002.

2. C. Bessiere and J. Ch. Arcconsistency for general constraint networks: Preliminary results.
In Proceedings of I J W - 9 7 , pages 398-104, Nagoya, Japan, August 1997.

3. A. Blum and M. Furst Fast planning through planning graph analysis. AIJ, 9q1-2):281-
300,1997.

4. J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. A,grwal, G. Mehta, and K. Vahi The role of
planning in grid computing. In P m . 13th IntL Con$ on Automated Planning and Scheduling
{IWS), 2003.

5. S. Chien, F. Fisher, E. Lo, H. Mortensen, and R Greeley. Using artificial intelligence plan-
ning to automate science data analysis for large image database. In Proc. I997 Conference
on Knowledge Discovery and Data Mining, August 1997.

6. R. Dechter. On the expressiveness of networks with hidden variables. In Proceedings of

7. M. Do and S. Kambbmpati Planning as constraint satisfaction: Solving the planning graph
by compiling it into CSP. Arrificial Intelligence, 132:151-182,2001.

8. J. Frank, A. J6nsmn, and P. Morris. On reformulating planning as dynamic constraint satis-
faction. In Symposium on Absrractwn, Reformdarwn and Approximation, Texas, 2000.

9. K. Golden. DPADL An action language for data processing domains. In Proceedings of the
3rd NASA I d Plnnning and Scheduling wonbshop, pages 28-33,2002. to appear.

10. R Golden and J. Frank. Universal quantification in a constraint-based planner. In AIPS02,
2002.

11. K. Golden and W. Pang. Constraint reasoning over strings. In Proceedings ofthe 9th Inter-
norional Conference on the Principles and Practices of Constraint Programming, 2003.

12. Keith Golden. An domain description language data processing. In ICAPS 2003 Workshop
on the Furure of PDDL, 2003.

13. A. jonsson. PmeduraL Keasonrng m Consfram Satufactwn. PhD thesis, Stanford Univer-
sity. 1996.

14. G. Katsirelos and F. Bacchus. GAC on conjunctions of constraints. In CP-2001,2001.
15. A.Lansky. Localized planrung with action-based constraints. Arrifirial Intelligence, 98(1-

16. A. Lopez and E Bacchus. Generalizing graphplan by formulating planning as a CSP. In

17. R Nemani. Data processing is 80 percent of the work. Personal Communication, 2003.
18. R. Nemani, P. Votava, J. Roads, M. White, P. Thornton, and J. Coughlan. Terrestrial obser-

vation and predition system: Integration of satellite and surface weather observations with
ecosystem models. In Proceedings of the 2002 I n t e m a t w d Geoscience and Remore Sew-
ing Symposium (IGARSS), 2002.

19. J.S. Penbeahy and D. Weld. UCFQP A sound, complete. partial order planner for ADL. In
Proc. 3rd Int. Gmf P r k i p k s of Knowledge Representation and Reasoning, pages 103-1 14,
October 1992.

20. D. Smith, J. Frank, and A. J6nsson. Bridging the gap between planning and scheduling.
Knowledge Engineering Review, 15(1):61-94,2OOO.

21. P. van Beek and X. Chen. CPlan: A constraint programming approach to planning. In
Proceedings of AAAI-99, 1999.

AAAI-90, PGWS 556562,1990.

2):49-136, 1998.

Proceedings of IJcAI-2OO3,2003.

